Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hapipah M. Ali, Subramaniam Puvaneswary and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.032$
$w R$ factor $=0.097$
Data-to-parameter ratio $=14.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis[1,3-dihydroxy-2-hydroxymethyl-2-(5-nitro-2-oxidobenzylideneamino)propane- $\left.\kappa^{3} N, O, O^{\prime}\right]$ nickel(II) pyridine solvate

The $\mathrm{Ni}^{\mathrm{II}}$ atom in the title complex, $\left[\mathrm{Ni}\left(\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{6}\right)_{2}\right] \cdot \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, is chelated by a terdentate Schiff base anion in a slightly octahedral geometry. One of the coordinated hydroxyl groups forms a hydrogen bond with the pyridine solvent molecule. In the crystal structure, other hydroxyl groups are involved in intermolecular hydrogen bonding, forming a two-dimensional layer.

Comment

The preceeding paper reports the crystal structure of the zinc derivative of the Schiff base derived by condensing 5-nitrosalicyaldehyde with tris(hydroxymethylamino)methane; the compound crystallizes as a pyridine solvate (Ali et al., 2006). The title Ni analog, (I), (Fig. 1), is isostructural, and in the crystal structure, an identical hydrogen-bonding motif (Table 2) links neighboring molecules into a tightly held twodimensional layer.

(I)

Experimental

1,3-Dihydroxy-2-hydroxymethyl-2-(2-hydroxy-5-nitrobenzylideneamino)propane was synthesized from tris(hydroxymethyl)aminomethane and 5-nitrosalicylaldehyde according a literature procedure (Chumakov et al., 2003, 2005). This ligand (0.30 g , 1.11 mmol) was dissolved in ethanol (25 ml) and several drops of aqueous sodium hydroxide were added to raise the pH of the solution to about 8.5 . Nickel(II) acetate ($0.30 \mathrm{~g}, 0.57 \mathrm{mmol}$) was then added and the mixture heated for 5 h . The solvent was removed and the product recrystallized from pyridine.

Received 19 September 2006 Accepted 21 September 2006

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{6}\right)_{2}\right] \cdot \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$
$M_{r}=676.28$
Monoclinic, $P 2_{1} / c$
$a=11.2465$ (1) \AA
$b=11.4857$ (2) \AA
$c=21.9861$ (3) \AA
$\beta=101.105$ (1) ${ }^{\circ}$
$V=2786.85(7) \AA^{3}$
Data collection
Bruker APEXII area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.675, T_{\text {max }}=0.824$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0537 P)^{2}\right.} \\
&+2.8761 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.72 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.81 \mathrm{e}^{-3}
\end{aligned}
$$

$Z=4$

$D_{x}=1.612 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.77 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Prism, green
$0.35 \times 0.31 \times 0.26 \mathrm{~mm}$

39058 measured reflections 6373 independent reflections 6017 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=27.5^{\circ}$
$w R\left(F^{2}\right)=0.097$
$S=1.08$
6373 reflections
430 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

Ni1-O1	$2.021(1)$	Ni1-O10	$2.123(1)$
Ni1-O4	$2.080(1)$	Ni1-N2	$2.031(1)$
Ni1-O7	$2.040(1)$	Ni1-N4	$2.024(1)$
O1-Ni1-O4	$170.81(5)$	O4-Ni1-N4	$92.59(5)$
O1-Ni1-O7	$90.63(5)$	$\mathrm{O} 7-\mathrm{Ni} 1-\mathrm{O} 10$	$167.14(5)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 10$	$87.40(5)$	$\mathrm{O} 7-\mathrm{Ni} 1-\mathrm{N} 2$	$96.15(5)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{N} 2$	$91.79(5)$	$\mathrm{O} 7-\mathrm{Ni} 1-\mathrm{N} 4$	$88.23(5)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{N} 4$	$96.11(5)$	$\mathrm{N} 2-\mathrm{Ni} 1-\mathrm{N} 4$	$170.93(6)$
$\mathrm{O} 4-\mathrm{Ni} 1-\mathrm{O} 7$	$92.59(5)$	$\mathrm{O} 10-\mathrm{Ni} 1-\mathrm{N} 2$	$96.60(5)$
$\mathrm{O} 4-\mathrm{Ni} 1-\mathrm{O} 10$	$91.32(5)$	$\mathrm{O} 10-\mathrm{Ni} 1-\mathrm{N} 4$	$79.36(5)$
$\mathrm{O} 4-\mathrm{Ni} 1-\mathrm{N} 2$	$79.32(5)$		

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O4-H4o \cdots N	0.85 (1)	1.80 (1)	2.653 (2)	175 (3)
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{o} \cdots \mathrm{Ob}^{\text {i }}$	0.85 (1)	1.79 (1)	2.606 (2)	162 (3)
O6-H6o \cdots O7 ${ }^{\text {ii }}$	0.85 (1)	1.77 (1)	2.611 (2)	176 (3)
$\mathrm{O} 10-\mathrm{H} 10 \mathrm{o} \cdots \mathrm{O} 1^{\text {iii }}$	0.84 (1)	1.98 (2)	2.757 (2)	153 (3)
O11-H11o \cdots O1 ${ }^{\text {iii }}$	0.85 (1)	1.94 (1)	2.783 (2)	178 (3)
$\mathrm{O} 12-\mathrm{H} 12 \mathrm{o} \cdots \mathrm{O}^{\text {iv }}$	0.85 (1)	1.93 (2)	2.739 (2)	159 (3)
Symmetry codes: $-x, y+\frac{1}{2},-z+\frac{3}{2} ; \text { (iv) }$	$\begin{aligned} & -x+1, y \\ & , y, z . \end{aligned}$	$z+\frac{3}{2} ;$	$-x+1, y+\frac{1}{2},-z+\frac{3}{2} ; \quad$ (iii)	

References

Ali, H. M., Punaveswary, S. \& Ng, S. W. (2006). Acta Cryst. E62, m2737-m2738. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Bruker (2004). APEX2 (Version 7.23A) and SAINT (Version 7.23A). Bruker AXS Inc., Madison, Wisconsin, USA.
Chumakov, Yu. M., Tsapkov, V. I., Simonov, Yu. A., Antosyak, B. Ya., Bocelli, G., Perrin, M., Starikova, Z. A., Samus, N. M. \& Gulea, A. P. (2005). Russ. J. Coord. Chem. 31, 588-596.
Chumakov, Yu. M., Tsapkov, V. I., Starikova, Z. A., Vorontsov, I. I., Korlyukov, A. A., Antosyak, B. Ya. \& Perrin, M. (2003). J. Mol. Struct. 647, 269-274.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

